M1.(a) (moment =) Force \times perpendicular distance between line of action (of force) and pivot / point \checkmark both marks need to be clear - avoid bod if the force is named specifically (e.g. weight) mark the work but give a maximum of 1 mark ignore extra material such as law of moments
(b) (i) moment $=250 \times 0.048=12 \checkmark$ (allow 12000 for this mark) only allow answers in other units if consistent e.g. 1200 Ncm
$\mathbf{N m} \checkmark$ (stand alone mark if no number is present but only for Nmm, N cm and Nm)
no working shown can gain full marks if answer and unit are consistent newton should be upper case if a symbol and metre should be in lower case (but only penalise if it is very obviously wrong)
(ii) $Y \times 0.027=12 \quad O R \quad Y=12 / 0.027$
(allow use of 12 and 27 for this mark)
$=440(\mathrm{~N}) \checkmark(444.4 \mathrm{~N}) \quad \mathrm{CE}$ from (i)
$Y=$ (i) $/ 0.027$
treat power of 10 error as an AE
note 450 N is wrong
1 sig fig is not acceptable
(iii) $\quad(k=F / \Delta L)$
$=444.4 / 0.015 \checkmark$ CE from (ii)
$=3.0 \times 10^{4}\left(\mathrm{Nm}^{-1}\right) \checkmark\left(29630 \mathrm{Nm}^{-1}\right)$
$k=(i i) / 0.015$
treat power of 10 error as an AE
using 440 gives $2.9 \times 10^{4}\left(\mathrm{Nm}^{-1}\right)$
1 sig fig is not acceptable
(iv) $W(=1 / 2 F \Delta L)=1 / 2 \times 444.4 \times 0.015$

Or
$W\left(=1 / 2 k \Delta L^{2}\right)=1 / 2 \times 29630 \times 0.015^{2}$,
(give this mark for seeing the digits only ie ignore powers of 10 and allow CE from (ii) or (iii) as appropriate

$$
=3.3 \text { (J) } \checkmark \quad(3.333 \mathrm{~J})
$$

$W=1 / 2 \times$ (ii) $\times 0.015$
$W=1 / 2 \times($ iii $) \times 0.015^{2}$
treat power of 10 error as an AE
if either equation misses out the $1 / 2$ no marks common CE is to use $F=250 \mathrm{~N}$ which can be used giving $W=1.9 \mathrm{~J}$

M2.B

M3.B

M4.(a) (i) $\quad m=W / g$)
$\left(3.4 \times 10^{4} / 9.81=\right) 3500(3466 \mathrm{~kg})$
Allow use of $g=10$
(ii) $\quad($ moment $=34000 \times 5.0)=1.7 \times 10^{5} \checkmark(\mathrm{Nm})$

Nm \checkmark do not allow $\mathrm{NM} \backslash \mathrm{nM}$ etc
allow in words
(iii) $170000=T \times \underline{12} \quad \mathrm{OR} \quad \mathrm{T}=170000 / \underline{12} \checkmark$ ecf aii $=1.4(167) \times 10^{4} \checkmark(\mathrm{~N})$
(iv) (component of T perpendicular to lever) $=T \underline{\cos } 24$ OR 14167×0.9135 OR $12942(\mathrm{~N}) \checkmark$ ecf aiii allow $2.5 \cos 24 \times T$
$(12942) \times 2.5=F \times 8.0$
OR F = $((12942) \times 2.5) / 8.0 \checkmark$ ecf for incorrect component of T or T on its own
$\mathrm{F}=4000(\mathrm{~N}) \checkmark(4044) \quad$ ecf for incorrect component of T or T on its own
allow 4100 for use of 14200 (4054)
Some working required for full marks. Correct answer only gets 2
Failure to find component of T is max 2 (4400 N)

M5.A

M6.(a) (sum of) clockwise moment(s) = (sum of) anticlockwise moment(s)
sum of clockwise moment $\underline{\mathbf{s}}=\underline{\text { sum }}$ of anticlockwise moment $\underline{\mathbf{s}}$ (about any given point)
(for a system in) equilibrium \checkmark allow 'balanced'
third mark depends upon the first
Don't allow references to 'forces' being balanced.
Don $\square t$ allow 'stationary'.
Allow 'total', etc instead of sum
Ignore definitions of moment
(b) (i) $35 \times 110\left(\times 10^{-3}\right) \checkmark$
$(=3.85)=3.9$ (or 3.8)
allow 4 or 3.90 but not 4.0
(3.9) Nm / allow $(3850,3900)$ Nmm \checkmark don't allow nm, NM unit must match answer
(ii) $\quad 3.85=\mathrm{T} \times 25\left(\times 10^{-3}\right) \checkmark$ ecf from (bi)

Correct answer with no working gets 2 out of three.

$$
\begin{aligned}
& \mathrm{T}=3.85 / 25\left(\times 10^{-3}\right)=0.150\left(\times 10^{3}\right) \checkmark \text { ecf } \\
& \text { Allow } 156(160) \mathrm{N} \text { from rounding error } \\
& =150(154 \mathrm{~N})
\end{aligned}
$$

(c) $\quad(P=F v, F=P / v)$
$=2.8\left(\times 10^{3}\right) / 15$
$=190(186.7 \mathrm{~N})$

M7. (a) (i) $\quad($ moment $=520 \times 0.26)=140(135.2) \checkmark$
Nm \checkmark
(ii) 180×0.41 and 0.63 X seen
$135.2=180 \times 0.41+0.63 \times \checkmark$ ecf from (a)(i)
$(X=(135.2-73.8) / 0.63)$
$=97 \checkmark(\mathrm{~N})(97.46)$ allow 105 from use of 140 Nm ecf from (a)(i)
(iii) $(520-(180+97.46))$
$=240 \checkmark(242.5 \mathrm{~N})$ ecf (or from correct moments calculation)
(b) (i) $\left(v^{2}=u^{2}+2 a s\right)$
$9.3^{2}=2 \times a \times 35$ OR $9.3^{2}=70 \mathrm{a}$ OR a $=v^{\prime} / 2 s$ OR 9.3²/70

OR correct alternative approach
$1.2(1.2356) \checkmark\left(\mathrm{m} \mathrm{s}^{-2}\right)$
(ii) $\quad(m=W / g)=520 / 9.81(=53.0) \checkmark(\mathrm{kg})$
$F=m a=53 \times 3$ bi $(1.2356)=65(\mathrm{~N})(65.49) \checkmark$
accept use of 1.2 giving $64(63.6)$, allow $53 \times 124=65.7$

M8.
(a) (i) 180000×2.8
$=500000 \checkmark(504000 \mathrm{Nm}) \quad$ ecf from first line for incorrect power of 10
(ii) $7.4 \times$ lift fan thrust
$=180000 \times 2.8(504000 \mathrm{Nm}) \checkmark \quad$ ecf from part ai
$\mathrm{F}=68000$ or $68 \mathrm{k}(\mathrm{N}) \checkmark(68108 \mathrm{~N}) \quad$ ecf
(iii) $180 \mathrm{k}-68.1 \mathrm{k}=(111.9=) 112 \mathrm{k}(\mathrm{N}) \checkmark$ ecf from part aii or by taking moments
(b) (i) $\quad(m=W / g)=180000 / 9.81 \checkmark(=18349 \mathrm{~kg})$
$a=F / m=155000 / 18349=8.4 \quad \checkmark\left(8.4475 \mathrm{~ms}^{-2}\right)$ ecf for use of 180 in $1^{\text {st }}$ mark
use of weight rather than mass gets zero
(ii) cross-sectional or surface area / shape / streamlining / aerodynamics / nature of surface / drag coefficient
correctly linked to its effect on air resistance/drag
or maximum thrust/force power of engine
counterforce increases with speed
or when drag equals thrust (forces are balanced)

line starting at zero and curving with decreasing gradient
reaching a constant velocity
(c) steepest/maximum gradient \checkmark

